Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion.

Identifieur interne : 000045 ( Main/Exploration ); précédent : 000044; suivant : 000046

The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion.

Auteurs : Huamei Xiao [République populaire de Chine] ; Xinhai Ye [République populaire de Chine] ; Hongxing Xu [République populaire de Chine] ; Yang Mei [République populaire de Chine] ; Yi Yang [République populaire de Chine] ; Xi Chen [République populaire de Chine] ; Yajun Yang [République populaire de Chine] ; Tao Liu [République populaire de Chine] ; Yongyi Yu [République populaire de Chine] ; Weifei Yang [République populaire de Chine] ; Zhongxian Lu [République populaire de Chine] ; Fei Li [République populaire de Chine]

Source :

RBID : pubmed:32359007

Abstract

The fall armyworm (Spodoptera frugiperda) is a lepidopteran insect pest that causes huge economic losses. This notorious insect pest has rapidly spread over the world in the past few years. However, the mechanisms of rapid dispersal are not well understood. Here, we report a chromosome-level assembled genome of the fall armyworm, named the ZJ-version, using PacBio and Hi-C technology. The sequenced individual was a female collected from the Zhejiang province of China and had high heterozygosity. The assembled genome size of ZJ-version was 486 Mb, containing 361 contigs with an N50 of 1.13 Mb. Hi-C scaffolding further assembled the genome into 31 chromosomes and a portion of W chromosome, representing 97.4% of all contigs and resulted in a chromosome-level genome with scaffold N50 of 16.3 Mb. The sex chromosomes were identified by genome resequencing of a single male pupa and a single female pupa. About 28% of the genome was annotated as repeat sequences, and 22,623 protein-coding genes were identified. Comparative genomics revealed the expansion of the detoxification-associated gene families, chemoreception-associated gene families, nutrition metabolism and transport system gene families in the fall armyworm. Transcriptomic and phylogenetic analyses focused on these gene families revealed the potential roles of the genes in polyphagia and invasion of fall armyworm. The high-quality of the fall armyworm genome provides an important genomic resource for further explorations of the mechanisms of polyphagia and insecticide resistance, as well as for pest management of fall armyworm.

DOI: 10.1111/1755-0998.13182
PubMed: 32359007


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion.</title>
<author>
<name sortKey="Xiao, Huamei" sort="Xiao, Huamei" uniqKey="Xiao H" first="Huamei" last="Xiao">Huamei Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun</wicri:regionArea>
<wicri:noRegion>Yichun</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ye, Xinhai" sort="Ye, Xinhai" uniqKey="Ye X" first="Xinhai" last="Ye">Xinhai Ye</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Hongxing" sort="Xu, Hongxing" uniqKey="Xu H" first="Hongxing" last="Xu">Hongxing Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mei, Yang" sort="Mei, Yang" uniqKey="Mei Y" first="Yang" last="Mei">Yang Mei</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yi" sort="Yang, Yi" uniqKey="Yang Y" first="Yi" last="Yang">Yi Yang</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xi" sort="Chen, Xi" uniqKey="Chen X" first="Xi" last="Chen">Xi Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yajun" sort="Yang, Yajun" uniqKey="Yang Y" first="Yajun" last="Yang">Yajun Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tao" sort="Liu, Tao" uniqKey="Liu T" first="Tao" last="Liu">Tao Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Annoroad Gene Technology (Beijing) Co Ltd, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Yongyi" sort="Yu, Yongyi" uniqKey="Yu Y" first="Yongyi" last="Yu">Yongyi Yu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Annoroad Gene Technology (Beijing) Co Ltd, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Weifei" sort="Yang, Weifei" uniqKey="Yang W" first="Weifei" last="Yang">Weifei Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Annoroad Gene Technology (Beijing) Co Ltd, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Zhongxian" sort="Lu, Zhongxian" uniqKey="Lu Z" first="Zhongxian" last="Lu">Zhongxian Lu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Fei" sort="Li, Fei" uniqKey="Li F" first="Fei" last="Li">Fei Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32359007</idno>
<idno type="pmid">32359007</idno>
<idno type="doi">10.1111/1755-0998.13182</idno>
<idno type="wicri:Area/Main/Corpus">000140</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000140</idno>
<idno type="wicri:Area/Main/Curation">000140</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000140</idno>
<idno type="wicri:Area/Main/Exploration">000140</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion.</title>
<author>
<name sortKey="Xiao, Huamei" sort="Xiao, Huamei" uniqKey="Xiao H" first="Huamei" last="Xiao">Huamei Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun</wicri:regionArea>
<wicri:noRegion>Yichun</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ye, Xinhai" sort="Ye, Xinhai" uniqKey="Ye X" first="Xinhai" last="Ye">Xinhai Ye</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Hongxing" sort="Xu, Hongxing" uniqKey="Xu H" first="Hongxing" last="Xu">Hongxing Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mei, Yang" sort="Mei, Yang" uniqKey="Mei Y" first="Yang" last="Mei">Yang Mei</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yi" sort="Yang, Yi" uniqKey="Yang Y" first="Yi" last="Yang">Yi Yang</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xi" sort="Chen, Xi" uniqKey="Chen X" first="Xi" last="Chen">Xi Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yajun" sort="Yang, Yajun" uniqKey="Yang Y" first="Yajun" last="Yang">Yajun Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tao" sort="Liu, Tao" uniqKey="Liu T" first="Tao" last="Liu">Tao Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Annoroad Gene Technology (Beijing) Co Ltd, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Yongyi" sort="Yu, Yongyi" uniqKey="Yu Y" first="Yongyi" last="Yu">Yongyi Yu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Annoroad Gene Technology (Beijing) Co Ltd, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Weifei" sort="Yang, Weifei" uniqKey="Yang W" first="Weifei" last="Yang">Weifei Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Annoroad Gene Technology (Beijing) Co Ltd, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Zhongxian" sort="Lu, Zhongxian" uniqKey="Lu Z" first="Zhongxian" last="Lu">Zhongxian Lu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Fei" sort="Li, Fei" uniqKey="Li F" first="Fei" last="Li">Fei Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular ecology resources</title>
<idno type="eISSN">1755-0998</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The fall armyworm (Spodoptera frugiperda) is a lepidopteran insect pest that causes huge economic losses. This notorious insect pest has rapidly spread over the world in the past few years. However, the mechanisms of rapid dispersal are not well understood. Here, we report a chromosome-level assembled genome of the fall armyworm, named the ZJ-version, using PacBio and Hi-C technology. The sequenced individual was a female collected from the Zhejiang province of China and had high heterozygosity. The assembled genome size of ZJ-version was 486 Mb, containing 361 contigs with an N50 of 1.13 Mb. Hi-C scaffolding further assembled the genome into 31 chromosomes and a portion of W chromosome, representing 97.4% of all contigs and resulted in a chromosome-level genome with scaffold N50 of 16.3 Mb. The sex chromosomes were identified by genome resequencing of a single male pupa and a single female pupa. About 28% of the genome was annotated as repeat sequences, and 22,623 protein-coding genes were identified. Comparative genomics revealed the expansion of the detoxification-associated gene families, chemoreception-associated gene families, nutrition metabolism and transport system gene families in the fall armyworm. Transcriptomic and phylogenetic analyses focused on these gene families revealed the potential roles of the genes in polyphagia and invasion of fall armyworm. The high-quality of the fall armyworm genome provides an important genomic resource for further explorations of the mechanisms of polyphagia and insecticide resistance, as well as for pest management of fall armyworm.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32359007</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1755-0998</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Molecular ecology resources</Title>
<ISOAbbreviation>Mol Ecol Resour</ISOAbbreviation>
</Journal>
<ArticleTitle>The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion.</ArticleTitle>
<Pagination>
<MedlinePgn>1050-1068</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1755-0998.13182</ELocationID>
<Abstract>
<AbstractText>The fall armyworm (Spodoptera frugiperda) is a lepidopteran insect pest that causes huge economic losses. This notorious insect pest has rapidly spread over the world in the past few years. However, the mechanisms of rapid dispersal are not well understood. Here, we report a chromosome-level assembled genome of the fall armyworm, named the ZJ-version, using PacBio and Hi-C technology. The sequenced individual was a female collected from the Zhejiang province of China and had high heterozygosity. The assembled genome size of ZJ-version was 486 Mb, containing 361 contigs with an N50 of 1.13 Mb. Hi-C scaffolding further assembled the genome into 31 chromosomes and a portion of W chromosome, representing 97.4% of all contigs and resulted in a chromosome-level genome with scaffold N50 of 16.3 Mb. The sex chromosomes were identified by genome resequencing of a single male pupa and a single female pupa. About 28% of the genome was annotated as repeat sequences, and 22,623 protein-coding genes were identified. Comparative genomics revealed the expansion of the detoxification-associated gene families, chemoreception-associated gene families, nutrition metabolism and transport system gene families in the fall armyworm. Transcriptomic and phylogenetic analyses focused on these gene families revealed the potential roles of the genes in polyphagia and invasion of fall armyworm. The high-quality of the fall armyworm genome provides an important genomic resource for further explorations of the mechanisms of polyphagia and insecticide resistance, as well as for pest management of fall armyworm.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Huamei</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0165-7410</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Xinhai</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0203-0663</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Hongxing</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mei</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yajun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Yongyi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Weifei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Zhongxian</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8410-5250</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>LZ18C060001</GrantID>
<Agency>Key Project of Zhejiang Provincial Natural Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31972354</GrantID>
<Agency>the National Science Foundation of Chinathe National Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31760514</GrantID>
<Agency>the National Science Foundation of Chinathe National Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol Resour</MedlineTA>
<NlmUniqueID>101465604</NlmUniqueID>
<ISSNLinking>1755-098X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">chromosome-level genome</Keyword>
<Keyword MajorTopicYN="N">comparative genomics</Keyword>
<Keyword MajorTopicYN="N">fall armyworm</Keyword>
<Keyword MajorTopicYN="N">insecticide resistance</Keyword>
<Keyword MajorTopicYN="N">polyphagia</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32359007</ArticleId>
<ArticleId IdType="doi">10.1111/1755-0998.13182</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., … Witt, A. (2017). Fall armyworm: Impacts and implications for Africa. Evidence Note (2). Report to DFID. Wallingford, UK: CAB International.</Citation>
</Reference>
<Reference>
<Citation>Adamczyk, J. J., Holloway, J. W., Leonard, B. R., & Graves, J. B. (2013). Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton. Journal of Cotton Science, 1(1), 21-28.</Citation>
</Reference>
<Reference>
<Citation>Bao, W. D., Kojima, K. K., & Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6, 11-16. 11/10.1186/s13100-015-0041-9</Citation>
</Reference>
<Reference>
<Citation>Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170</Citation>
</Reference>
<Reference>
<Citation>Booker, C. J., Bedmutha, R., Vogel, T., Gloor, A., Xu, R., Ferrante, L., … Briens, C. (2010). Experimental investigations into the insecticidal, fungicidal, and bactericidal properties of pyrolysis bio-oil from tobacco leaves using a fluidized bed pilot plant. Industrial & Engineering Chemistry Research, 49(20), 10074-10079. https://doi.org/10.1021/ie100329z</Citation>
</Reference>
<Reference>
<Citation>Burton, J. N., Adey, A., Patwardhan, R. P., Qiu, R. L., Kitzman, J. O., & Shendure, J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnology, 31(12), 1119-1125. https://doi.org/10.1038/nbt.2727</Citation>
</Reference>
<Reference>
<Citation>Capella-Gutierrez, S., Silla-Martinez, J. M., & Gabaldon, T. (2009). trimal: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972-1973. https://doi.org/10.1093/bioinformatics/btp348</Citation>
</Reference>
<Reference>
<Citation>Carvalho, R. A., Omoto, C., Field, L. M., Williamson, M. S., & Bass, C. (2013). Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE, 8(4), e62268. https://doi.org/10.1371/journal.pone.0062268</Citation>
</Reference>
<Reference>
<Citation>Chandrasena, D. I., Signorini, A. M., Abratti, G., Storer, N. P., Olaciregui, M. L., Alves, A. P., & Pilcher, C. D. (2018). Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Management Science, 74(3), 746-754. https://doi.org/10.1002/ps.4776</Citation>
</Reference>
<Reference>
<Citation>Chen, W. B., Yang, X. W., Tetreau, G., Song, X. Z., Coutu, C., Hegedus, D., … Wang, P. (2019). A high-quality chromosome-level genome assembly of a generalist herbivore, Trichoplusia ni. Molecular Ecology Resources, 19(2), 485-496. https://doi.org/10.1111/1755-0998.12966</Citation>
</Reference>
<Reference>
<Citation>Cheng, T., Wu, J., Wu, Y., Chilukuri, R. V., Huang, L., Yamamoto, K., … Mita, K. (2017). Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nature Ecology & Evolution, 1(11), 1747-1756. https://doi.org/10.1038/s41559-017-0314-4</Citation>
</Reference>
<Reference>
<Citation>Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). blast2go: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. https://doi.org/10.1093/bioinformatics/bti610</Citation>
</Reference>
<Reference>
<Citation>Cruz-Esteban, S., Rojas, J. C., Sanchez-Guillen, D., Cruz-Lopez, L., & Malo, E. A. (2018). Geographic variation in pheromone component ratio and antennal responses, but not in attraction, to sex pheromones among fall armyworm populations infesting corn in Mexico. Journal of Pest Science, 91(3), 973-983. https://doi.org/10.1007/s10340-018-0967-z</Citation>
</Reference>
<Reference>
<Citation>Daimon, T., Taguchi, T., Meng, Y., Katsuma, S., Mita, K., & Shimada, T. (2008). beta-fructofuranosidase genes of the silkworm, Bombyx mori - Insights into enzymatic adaptation of B. mori to toxic alkaloids in mulberry latex. Journal of Biological Chemistry, 283(22), 15271-15279. https://doi.org/10.1074/jbc.M709350200</Citation>
</Reference>
<Reference>
<Citation>De Bie, T., Cristianini, N., Demuth, J. P., & Hahn, M. W. (2006). CAFE: A computational tool for the study of gene family evolution. Bioinformatics, 22(10), 1269-1271. https://doi.org/10.1093/bioinformatics/btl097</Citation>
</Reference>
<Reference>
<Citation>Dermauw, W., & Van Leeuwen, T. (2014). The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochemistry and Molecular Biology, 45, 89-110. https://doi.org/10.1016/j.ibmb.2013.11.001</Citation>
</Reference>
<Reference>
<Citation>Despres, L., David, J. P., & Gallet, C. (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22(6), 298-307. https://doi.org/10.1016/j.tree.2007.02.010</Citation>
</Reference>
<Reference>
<Citation>Droop, A. P. (2016). fqtools: An efficient software suite for modern FASTQ file manipulation. Bioinformatics, 32(12), 1883-1884. https://doi.org/10.1093/bioinformatics/btw088</Citation>
</Reference>
<Reference>
<Citation>Ellis, L. L., Huang, W., Quinn, A. M., Ahuja, A., Alfrejd, B., Gomez, F. E., … Tarone, A. M. (2014). Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity. PLOS Genetics, 10(7), 14. https://doi.org/10.1371/journal.pgen.1004522</Citation>
</Reference>
<Reference>
<Citation>Feldmann, F., Rieckmann, U., & Winter, S. (2019). The spread of the fall armyworm Spodoptera frugiperda in Africa What should be done next? Journal of Plant Diseases and Protection, 126(2), 97-101. https://doi.org/10.1007/s41348-019-00204-0</Citation>
</Reference>
<Reference>
<Citation>Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., … Punta, M. (2014). Pfam: The protein families database. Nucleic Acids Research, 42(D1), D222-D230. https://doi.org/10.1093/nar/gkt1223</Citation>
</Reference>
<Reference>
<Citation>Fu, X., Li, J., Tian, Y. U., Quan, W., Zhang, S., Liu, Q., … Hu, J. (2017). Long-read sequence assembly of the firefly Pyrocoelia pectoralis genome. Gigascience, 6(12), 1-7. https://doi.org/10.1093/gigascience/gix112</Citation>
</Reference>
<Reference>
<Citation>Fu, Y. U., Yang, Y., Zhang, H., Farley, G., Wang, J., Quarles, K. A., … Zamore, P. D. (2018). The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. eLife, 7, 41. https://doi.org/10.7554/eLife.31628</Citation>
</Reference>
<Reference>
<Citation>Gan, Q., Zhang, X., Zhang, D., Shi, L., Zhou, Y., Sun, T., … Meng, Y. (2018). BmSUC1 is essential for glycometabolism modulation in the silkworm, Bombyx mori. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms, 1861(6), 543-553. https://doi.org/10.1016/j.bbagrm.2018.04.002</Citation>
</Reference>
<Reference>
<Citation>Ganiger, P. C., Yeshwanth, H. M., Muralimohan, K., Vinay, N., Kumar, A. R. V., & Chandrashekara, K. (2018). Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Current Science, 115(4), 621-623. https://doi.org/10.18520/cs/v115/i4/621-623</Citation>
</Reference>
<Reference>
<Citation>Gatehouse, J. A. (2002). Plant resistance towards insect herbivores: A dynamic interaction. New Phytologist, 156(2), 145-169. https://doi.org/10.1046/j.1469-8137.2002.00519.x</Citation>
</Reference>
<Reference>
<Citation>Giraudo, M., Hilliou, F., Fricaux, T., Audant, P., Feyereisen, R., & Le Goff, G. (2015). Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): Responses to plant allelochemicals and pesticides. Insect Molecular Biology, 24(1), 115-128. https://doi.org/10.1111/imb.12140</Citation>
</Reference>
<Reference>
<Citation>Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., & Tamo, M. (2016). First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE, 11(10), e0165632. https://doi.org/10.1371/journal.pone.0165632</Citation>
</Reference>
<Reference>
<Citation>Gouin, A., Bretaudeau, A., Nam, K., Gimenez, S., Aury, J.-M., Duvic, B., … Fournier, P. (2017). Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific Reports, 7(1), 11816-11827. https://doi.org/10.1038/s41598-017-10461-4</Citation>
</Reference>
<Reference>
<Citation>Grabherr, M. G., Russell, P., Meyer, M., Mauceli, E., Alfoldi, J., Di Palma, F., & Lindblad-Toh, K. (2010). Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics, 26(9), 1145-1151. https://doi.org/10.1093/bioinformatics/btq102</Citation>
</Reference>
<Reference>
<Citation>Gremme, G., Brendel, V., Sparks, M. E., & Kurtz, S. (2005). Engineering a software tool for gene structure prediction in higher organisms. Information and Software Technology, 47(15), 965-978. https://doi.org/10.1016/j.infsof.2005.09.005</Citation>
</Reference>
<Reference>
<Citation>Gutierrez-Moreno, R., Mota-Sanchez, D., Blanco, C. A., Whalon, M. E., Teran-Santofimio, H., Rodriguez-Maciel, J. C., & DiFonzo, C. (2019). Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. Journal of Economic Entomology, 112(2), 792-802. https://doi.org/10.1093/jee/toy372</Citation>
</Reference>
<Reference>
<Citation>Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., … Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biology, 9(1), 22. https://doi.org/10.1186/gb-2008-9-1-r7</Citation>
</Reference>
<Reference>
<Citation>Hao, Z. D., Lv, D. K., Ge, Y., Shi, J. S., Weijers, D., Yu, G. C., & Chen, J. H. (2019). RIdeogram: Drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Preprints, 7, e27928v1. https://doi.org/10.7287/peerj.preprints.27928v1</Citation>
</Reference>
<Reference>
<Citation>Istace, B., Friedrich, A., d'Agata, L., Faye, S., Payen, E., Beluche, O., … Aury, J.-M. (2017). de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer. Gigascience, 6(2), 1-13. https://doi.org/10.1093/gigascience/giw018</Citation>
</Reference>
<Reference>
<Citation>Jakka, S. R. K., Gong, L., Hasler, J., Banerjee, R., Sheets, J. J., Narva, K., … Jurat-Fuentes, J. L. (2016). Field-evolved mode resistance of the fall armyworm to transgenic Cry1Fa-expressing corn associated with reduced Cry1Fa toxin binding and midgut Alkaline Phosphatase expression. Applied and Environmental Microbiology, 82(4), 1023-1034. https://doi.org/10.1128/Aem.02871-15</Citation>
</Reference>
<Reference>
<Citation>Juarez, M. L., Schofl, G., Vera, M. T., Vilardi, J. C., Murua, M. G., Willink, E., … Groot, A. T. (2014). Population structure of Spodoptera frugiperda maize and rice host forms in South America: Are they host strains? Entomologia Experimentalis Et Applicata, 152(3), 182-199. https://doi.org/10.1111/eea.12215</Citation>
</Reference>
<Reference>
<Citation>Kakumani, P. K., Malhotra, P., Mukherjee, S. K., & Bhatnagar, R. K. (2014). A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics, 104(2), 134-143. https://doi.org/10.1016/j.ygeno.2014.06.005</Citation>
</Reference>
<Reference>
<Citation>Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285</Citation>
</Reference>
<Reference>
<Citation>Kanehisa, M., Sato, Y., & Morishima, K. (2016). blastkoala and ghostkoala: KEGG Tools for Functional characterization of genome and metagenome sequences. Journal of Molecular Biology, 428(4), 726-731. https://doi.org/10.1016/j.jmb.2015.11.006</Citation>
</Reference>
<Reference>
<Citation>Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010</Citation>
</Reference>
<Reference>
<Citation>Kim, D., Landmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. https://doi.org/10.1038/nmeth.3317</Citation>
</Reference>
<Reference>
<Citation>Koch, K. (2004). Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7(3), 235-246. https://doi.org/10.1016/j.pbi.2004.03.014</Citation>
</Reference>
<Reference>
<Citation>Kojima, W., Fujii, T., Suwa, M., Miyazawa, M., & Ishikawa, Y. (2010). Physiological adaptation of the Asian corn borer Ostrinia furnacalis to chemical defenses of its host plant, maize. Journal of Insect Physiology, 56(9), 1349-1355. https://doi.org/10.1016/j.jinsphys.2010.04.021</Citation>
</Reference>
<Reference>
<Citation>Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 27(5), 722-736. https://doi.org/10.1101/gr.215087.116</Citation>
</Reference>
<Reference>
<Citation>Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5, 59-67. https://doi.org/10.1186/1471-2105-5-59</Citation>
</Reference>
<Reference>
<Citation>Krempl, C., Heidel-Fischer, H. M., Jiménez-Alemán, G. H., Reichelt, M., Menezes, R. C., Boland, W., … Joußen, N. (2016). Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology, 78, 69-77. https://doi.org/10.1016/j.ibmb.2016.09.003</Citation>
</Reference>
<Reference>
<Citation>Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., … Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639-1645. https://doi.org/10.1101/gr.092759.109</Citation>
</Reference>
<Reference>
<Citation>Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923</Citation>
</Reference>
<Reference>
<Citation>Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 16. https://doi.org/10.1186/1471-2105-12-323</Citation>
</Reference>
<Reference>
<Citation>Li, L., Stoeckert, C. J., & Roos, D. S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13(9), 2178-2189. https://doi.org/10.1101/gr.1224503</Citation>
</Reference>
<Reference>
<Citation>Li, X.-J., Wu, M.-F., Ma, J., Gao, B.-Y., Wu, Q.-L., Chen, A.-D., … Hu, G. (2019). Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach. Pest Management Science, 76(2), 454-463. https://doi.org/10.1002/ps.5530</Citation>
</Reference>
<Reference>
<Citation>Liebl, W., Brem, D., & Gotschlich, A. (1998). Analysis of the gene for beta-fructosidase (invertase, inulinase) of the hyperthermophilic bacterium Thermotoga maritima, and characterisation of the enzyme expressed in Escherichia coli. Applied Microbiology and Biotechnology, 50(1), 55-64. https://doi.org/10.1007/s002530051256</Citation>
</Reference>
<Reference>
<Citation>Lima, E. R., & McNeil, J. N. (2009). Female sex pheromones in the host races and hybrids of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemoecology, 19(1), 29-36. https://doi.org/10.1007/s00049-009-0005-y</Citation>
</Reference>
<Reference>
<Citation>Liu, H., Lan, T. M., Fang, D. M., Gui, F. R., Wang, H. L., Guo, W., Liu, X. (2019). Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China. bioRxiv, 671560. https://doi.org/10.1101/671560</Citation>
</Reference>
<Reference>
<Citation>Liu, X. L., Chen, J., & Yang, Z. F. (2010). Characterization and induction of two cytochrome P450 genes, CYP6AE28 and CYP6AE30, in Cnaphalocrocis medinalis: Possible involvement in metabolism of rice allelochemicals. Zeitschrift Fur Naturforschung Section C - A Journal of Biosciences, 65(11-12), 719-725. https://doi.org/10.1515/znc-2010-11-1213</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., Xiao, H., Mei, Y., Yang, Y., Ye, X., Chen, A., & Li, F. (2019). Evolutionary analysis of chemoreception related gene families of Spodoptera frugiperda. Journal of Environmental Entomology, 41(4), 718-726.</Citation>
</Reference>
<Reference>
<Citation>Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., … Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636-W641. https://doi.org/10.1093/nar/gkz268</Citation>
</Reference>
<Reference>
<Citation>Marcais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6), 764-770. https://doi.org/10.1093/bioinformatics/btr011</Citation>
</Reference>
<Reference>
<Citation>Martinelli, S., Barata, R. M., Zucchi, M. I., Silva-Filho Mde, C., & Omoto, C. (2006). Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil. Journal of Economic Entomology, 99(2), 519-526. https://doi.org/10.1603/0022-0493-99.2.519</Citation>
</Reference>
<Reference>
<Citation>Mei, Y., Yang, Y., Ye, X., Xiao, H., & Li, F. (2019). Evolutionary analysis of detoxification gene families of Spodoptera frugiperda. Journal of Environmental Entomology, 41(4), 727-735.</Citation>
</Reference>
<Reference>
<Citation>Montezano, D. G., Specht, A., Sosa-Gomez, D. R., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. V., … Hunt, T. E. (2018). Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2), 286-300. https://doi.org/10.4001/003.026.0286</Citation>
</Reference>
<Reference>
<Citation>Mota-Sanchez, D., & Wise, J. (2017). Arthropod pesticide resistance database, East Lansing, MI: Michigan State University. Retrieved from https://www.pesticideresistance.org/</Citation>
</Reference>
<Reference>
<Citation>Nagoshi, R. N. (2010). The fall armyworm Triose Phosphate Isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Annals of the Entomological Society of America, 103(2), 283-292. https://doi.org/10.1603/an09046</Citation>
</Reference>
<Reference>
<Citation>Nagoshi, R. N., Goergen, G., Du Plessis, H., van den Berg, J., & Meagher, R. (2019). Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Scientific Reports, 9, 11. https://doi.org/10.1038/s41598-019-44744-9</Citation>
</Reference>
<Reference>
<Citation>Nagoshi, R. N., Koffi, D., Agboka, K., Tounou, K. A., Banerjee, R., Jurat-Fuentes, J. L., & Meagher, R. L. (2017). Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE, 12(7), e0181982. https://doi.org/10.1371/journal.pone.0181982</Citation>
</Reference>
<Reference>
<Citation>Nam, K., Gimenez, S., Hilliou, F., Blanco, C. A., Hänniger, S., Bretaudeau, A., … d'Alençon, E. (2019). Adaptation by copy number variation increases insecticide resistance in fall armyworms. bioRxiv, 812958. https://doi.org/10.1101/812958</Citation>
</Reference>
<Reference>
<Citation>Nandakumar, S., Ma, H., & Khan, A. S. (2017). Whole-genome sequence of the Spodoptera frugiperda Sf9 insect cell line. Microbiology Resource Announcements, 5(34), e00829. 17/10.1128/genomeA.00829-17</Citation>
</Reference>
<Reference>
<Citation>Nardon, C., Deceliere, G., Loevenbruck, C., Weiss, M., Vieira, C., & Biemont, C. (2005). Is genome size influenced by colonization of new environments in dipteran species? Molecular Ecology, 14(3), 869-878. https://doi.org/10.1111/j.1365-294X.2005.02457.x</Citation>
</Reference>
<Reference>
<Citation>NATESC (2019a). Major pest Spodoptera frugiperda have invaded in Yunnan, and all areas should immediately strengthen investigation and monitoring. Plant Pathogen and Pest Information, No. 7/2019-1-18. Beijing, China: NATESC. Retrieved from https://www.natesc.org.cn/</Citation>
</Reference>
<Reference>
<Citation>NATESC (2019b). Occurrence trends of major diseases and insect pests in Maize. Plant Pathogen and Pest Information, No. 29/2019-8-21. Beijing, China: NATESC. Retrieved from https://www.natesc.org.cn/</Citation>
</Reference>
<Reference>
<Citation>Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300</Citation>
</Reference>
<Reference>
<Citation>Omoto, C., Bernardi, O., Salmeron, E., Sorgatto, R. J., Dourado, P. M., Crivellari, A., … Head, G. P. (2016). Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Management Science, 72(9), 1727-1736. https://doi.org/10.1002/ps.4201</Citation>
</Reference>
<Reference>
<Citation>Panfilio, K. A., Vargas Jentzsch, I. M., Benoit, J. B., Erezyilmaz, D., Suzuki, Y., Colella, S., … Richards, S. (2019). Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biology, 20(1), 64. https://doi.org/10.1186/s13059-019-1660-0</Citation>
</Reference>
<Reference>
<Citation>Pashley, D. P. (1988). Quantitative genetics, development, and physiological adaptation in host strains of fall armyworm. Evolution, 42(1), 93-102. https://doi.org/10.2307/2409118</Citation>
</Reference>
<Reference>
<Citation>Pashley, D. P., Johnson, S. J., & Sparks, A. N. (1985). Genetic population-structure of migratory moths - The fall armyworm (Lepidoptera, Noctuidae). Annals of the Entomological Society of America, 78(6), 756-762. https://doi.org/10.1093/aesa/78.6.756</Citation>
</Reference>
<Reference>
<Citation>Pearce, S. L., Clarke, D. F., East, P. D., Elfekih, S., Gordon, K. H. J., Jermiin, L. S., … Wu, Y. D. (2017). Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biology, 15, 30. https://doi.org/10.1186/s12915-017-0402-6</Citation>
</Reference>
<Reference>
<Citation>Pedezzi, R., Fonseca, F. P. P., Santos, C. D., Kishi, L. T., Terra, W. R., & Henrique-Silva, F. (2014). A novel beta-fructofuranosidase in Coleoptera: Characterization of a beta-fructofuranosidase from the sugarcane weevil, Sphenophorus levis. Insect Biochemistry and Molecular Biology, 55, 31-38. https://doi.org/10.1016/j.ibmb.2014.10.005</Citation>
</Reference>
<Reference>
<Citation>Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290-295. https://doi.org/10.1038/nbt.3122</Citation>
</Reference>
<Reference>
<Citation>Petersen, R. A., Niamsup, H., Berenbaum, M. R., & Schuler, M. A. (2003). Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals. Biochimica Et Biophysica Acta-General Subjects, 1619(3), 269-282. https://doi.org/10.1016/s0304-4165(02)00486-5</Citation>
</Reference>
<Reference>
<Citation>Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R., & Finn, R. D. (2018). HMMER web server: 2018 update. Nucleic Acids Research, 46(W1), W200-W204. https://doi.org/10.1093/nar/gky448</Citation>
</Reference>
<Reference>
<Citation>Prasanna, B. M., Huesing, J. E., Eddy, R., & Peschke, V. M. (2018). Fall armyworm in Africa: A guide for integrated pest management. CABI, 1-120. https://www.usaid.gov/sites/default/files/documents/1867/Fall-Armyworm-IPM-Guide-for-Africa-Jan_30-2018.pdf</Citation>
</Reference>
<Reference>
<Citation>Pryszcz, L. P., & Gabaldón, T. (2016). Redundans: An assembly pipeline for highly heterozygous genomes. Nucleic Acids Research, 44(12), e113. https://doi.org/10.1093/nar/gkw294</Citation>
</Reference>
<Reference>
<Citation>Rupasinghe, S. G., Wen, Z., Chiu, T. L., & Schuler, M. A. (2007). Helicoverpa zea CYP6B8 and CYP321A1: Different molecular solutions to the problem of metabolizing plant toxins and insecticides. Protein Engineering Design & Selection, 20(12), 615-624. https://doi.org/10.1093/protein/gzm063</Citation>
</Reference>
<Reference>
<Citation>Sahara, K., Yoshido, A., & Traut, W. (2012). Sex chromosome evolution in moths and butterflies. Chromosome Research, 20(1), 83-94. https://doi.org/10.1007/s10577-011-9262-z</Citation>
</Reference>
<Reference>
<Citation>Schofl, G., Heckel, D. G., & Groot, A. T. (2009). Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: Evidence for differing modes of inheritance. Journal of Evolutionary Biology, 22(7), 1447-1459. https://doi.org/10.1111/j.1420-9101.2009.01759.x</Citation>
</Reference>
<Reference>
<Citation>Schreiber, F., Patricio, M., Muffato, M., Pignatelli, M., & Bateman, A. (2014). TreeFam v9: A new website, more species and orthology-on-the-fly. Nucleic Acids Research, 42(D1), D922-D925. https://doi.org/10.1093/nar/gkt1055</Citation>
</Reference>
<Reference>
<Citation>Servant, N., Varoquaux, N., Lajoie, B. R., Viara, E., Chen, C.-J., Vert, J.-P., … Barillot, E. (2015). HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome Biology, 16(1), 259-269. https://doi.org/10.1186/s13059-015-0831-x</Citation>
</Reference>
<Reference>
<Citation>Sharanabasappa, D., Kalleshwaraswamy, C. M., Asokan, R., Swamy, H. M., Martuthi, M. S., Pavithra, H. B., … Geoergen, G. (2018). First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Managcmcm: in Horticul.tuml Ecosystems, 24(1), 23-29.</Citation>
</Reference>
<Reference>
<Citation>Shi, J., Ma, X., Zhang, J., Zhou, Y., Liu, M., Huang, L., … Lai, J. (2019). Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nature Communication, 10(1), 464. https://doi.org/10.1038/s41467-018-07876-6</Citation>
</Reference>
<Reference>
<Citation>Slater, G. S., & Birney, E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics, 6, 11. https://doi.org/10.1186/1471-2105-6-31</Citation>
</Reference>
<Reference>
<Citation>Stanke, M., Diekhans, M., Baertsch, R., & Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24(5), 637-644. https://doi.org/10.1093/bioinformatics/btn013</Citation>
</Reference>
<Reference>
<Citation>Stipanovic, R. D., Lopez, J. D., Dowd, M. K., Puckhaber, L. S., & Duke, S. E. (2006). Effect of racemic and (+)- and (-)-gossypol on the survival and development of Helicoverpa zea larvae. Journal of Chemical Ecology, 32(5), 959-968. https://doi.org/10.1007/s10886-006-9052-9</Citation>
</Reference>
<Reference>
<Citation>Storer, N. P., Babcock, J. M., Schlenz, M., Meade, T., Thompson, G. D., Bing, J. W., & Huckaba, R. M. (2010). Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. Journal of Economic Entomology, 103(4), 1031-1038. https://doi.org/10.1603/Ec10040</Citation>
</Reference>
<Reference>
<Citation>Suyama, M., Torrents, D., & Bork, P. (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34, W609-W612. https://doi.org/10.1093/nar/gkl315</Citation>
</Reference>
<Reference>
<Citation>Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, Chapter 4, 25(1), 4.10.1-4.10.14. https://doi.org/10.1002/0471250953.bi0410s25</Citation>
</Reference>
<Reference>
<Citation>Todd, E. L., & Poole, R. W. (1980). Keys and illustrations for the armyworm moths of the Noctuid genus Spodoptera guenee from the Western Hemisphere. Annals of the Entomological Society of America, 73(6), 722-738. https://doi.org/10.1093/aesa/73.6.722</Citation>
</Reference>
<Reference>
<Citation>Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Unverwood, J. C., Fang, H., Gurtowski, J., & Schatz, C. M. (2017). GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics, 33(14), 2202-2204. https://doi.org/10.1093/bioinformatics/btx153</Citation>
</Reference>
<Reference>
<Citation>Wahlberg, N., Wheat, C. W., & Pena, C. (2013). Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS ONE, 8(11), 8. https://doi.org/10.1371/journal.pone.0080875</Citation>
</Reference>
<Reference>
<Citation>Wan, F., Yin, C., Tang, R., Chen, M., Wu, Q., Huang, C., … Li, F. (2019). A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nature Communications, 10, 14. https://doi.org/10.1038/s41467-019-12175-9</Citation>
</Reference>
<Reference>
<Citation>Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., … Zdobnov, E. M. (2018). BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35(3), 543-548. https://doi.org/10.1093/molbev/msx319</Citation>
</Reference>
<Reference>
<Citation>Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J., & Jairam, S. (2016). Modeling seasonal migration of fall armyworm moths. International Journal of Biometeorology, 60(2), 255-267. https://doi.org/10.1007/s00484-015-1022-x</Citation>
</Reference>
<Reference>
<Citation>Wu, Q., Jiang, Y., & Wu, K. (2019). Analysis of migration routes of the fall armyworm Spodoptera frugiperda (J.E.Smith) from Myanmar to China. Plant Protection, 45(2), 1-6.</Citation>
</Reference>
<Reference>
<Citation>Xu, W., Papanicolaou, A., Zhang, H. J., & Anderson, A. (2016). Expansion of a bitter taste receptor family in a polyphagous insect herbivore. Scientific Reports, 6, 10. https://doi.org/10.1038/srep23666</Citation>
</Reference>
<Reference>
<Citation>Yang, Z. H. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. https://doi.org/10.1093/molbev/msm088</Citation>
</Reference>
<Reference>
<Citation>Yin, C., Shen, G., Guo, D., Wang, S., Ma, X., Xiao, H., … Li, F. (2016). InsectBase: A resource for insect genomes and transcriptomes. Nucleic Acids Research, 44(D1), D801-D807. https://doi.org/10.1093/nar/gkv1204</Citation>
</Reference>
<Reference>
<Citation>Yu, S. J., Nguyen, S. N., & Abo-Elghar, G. E. (2003). Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pesticide Biochemistry and Physiology, 77(1), 1-11. https://doi.org/10.1016/S0048-3575(03)00079-8</Citation>
</Reference>
<Reference>
<Citation>Zhang, H. H., Xu, M. R., Wang, P. L., Zhu, Z. G., Nie, C. F., Xiong, X. M., … Dai, F. Y. (2020). High-quality genome assembly and transcriptome of Ancherythroculter nigrocauda, an endemic Chinese cyprinid species. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13158</Citation>
</Reference>
<Reference>
<Citation>Zhang, L., Liu, B., Zheng, W. G., Liu, C. H., Zhang, D. D., Zhao, S. Y., Xiao, Y. T. (2019). High-depth resequencing reveals hybrid population and insecticide resistance characteristics of fall armyworm (Spodoptera frugiperda) invading China. bioRxiv, 813154. https://doi.org/10.1101/813154</Citation>
</Reference>
<Reference>
<Citation>Zhao, C., Doucet, D., & Mittapalli, O. (2014). Characterization of horizontally transferred beta-fructofuranosidase (ScrB) genes in Agrilus planipennis. Insect Molecular Biology, 23(6), 821-832. https://doi.org/10.1111/imb.12127</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Zhejiang</li>
</region>
<settlement>
<li>Hangzhou</li>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université de Zhejiang</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xiao, Huamei" sort="Xiao, Huamei" uniqKey="Xiao H" first="Huamei" last="Xiao">Huamei Xiao</name>
</noRegion>
<name sortKey="Chen, Xi" sort="Chen, Xi" uniqKey="Chen X" first="Xi" last="Chen">Xi Chen</name>
<name sortKey="Li, Fei" sort="Li, Fei" uniqKey="Li F" first="Fei" last="Li">Fei Li</name>
<name sortKey="Liu, Tao" sort="Liu, Tao" uniqKey="Liu T" first="Tao" last="Liu">Tao Liu</name>
<name sortKey="Lu, Zhongxian" sort="Lu, Zhongxian" uniqKey="Lu Z" first="Zhongxian" last="Lu">Zhongxian Lu</name>
<name sortKey="Mei, Yang" sort="Mei, Yang" uniqKey="Mei Y" first="Yang" last="Mei">Yang Mei</name>
<name sortKey="Xiao, Huamei" sort="Xiao, Huamei" uniqKey="Xiao H" first="Huamei" last="Xiao">Huamei Xiao</name>
<name sortKey="Xu, Hongxing" sort="Xu, Hongxing" uniqKey="Xu H" first="Hongxing" last="Xu">Hongxing Xu</name>
<name sortKey="Yang, Weifei" sort="Yang, Weifei" uniqKey="Yang W" first="Weifei" last="Yang">Weifei Yang</name>
<name sortKey="Yang, Yajun" sort="Yang, Yajun" uniqKey="Yang Y" first="Yajun" last="Yang">Yajun Yang</name>
<name sortKey="Yang, Yi" sort="Yang, Yi" uniqKey="Yang Y" first="Yi" last="Yang">Yi Yang</name>
<name sortKey="Ye, Xinhai" sort="Ye, Xinhai" uniqKey="Ye X" first="Xinhai" last="Ye">Xinhai Ye</name>
<name sortKey="Yu, Yongyi" sort="Yu, Yongyi" uniqKey="Yu Y" first="Yongyi" last="Yu">Yongyi Yu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000045 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000045 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32359007
   |texte=   The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32359007" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020